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PUSB Electron: caracteristique ondulatoire

Reétflexion et transmission

Etffet tunnel
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PUPB

Réflexion totale

Step de potentiel

Comparaison: photons € -> ¢lectrons

*®

Réflexion frustrée

Effet tunnel
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PUSB Reéflexion sur un step de potentiel
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A P’interface, la fonction d’onde et sa dérivée sont continues® - déterminer r, et t,,

* Voir Cohen-Tannoudji Livre I p. 66.
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PURB

Réflexion sur un step de potentiel
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PUPB Réflexion sur un step de potentiel
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g)agB | Rétlexion:

cellule solaire hétérostructure réflexive

Suppression des pertes aux contacts

; Recombinaison
interne Collection Tunnel

Tunnel
-t
‘ ¢

Tunnel

Collection
Tunnel D

Recombinaison
interne O

Les minoritaires sont
réfléchis aux contacts
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2R Effet tunnel
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Aux interfaces, la fonction d’onde et sa dérivée sont continues = déterminer r et t
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2R Effet tunnel
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Barriére deux fois plus large Barriére de référence Barriére deux fois plus fine
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PUPB Effet tunnel et Fabry-Perrot ¢lectronique

E — [eV] x ——> [m]
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PARB Effet tunnel (1)

contact ohmique

OHMIC CONTACT I ' OHMIC CONTACT

Electrons tunnel

through narrow \
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J. Singh « Semiconductor devices »
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f]) afB Effet tunnel (2 ) L. Esaki, prix Nobel ““

diode tunnel de physique 1973
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PARB Effet tunnel (5)

floating gate memories
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S. Sze « Physics of semiconductor devices »
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Scanning tunnel microscope (STM)

Tunneling
voltage

&

https://en.wikipedia.org/wiki/Scanning_tunneling_microscope

Piezoelectric tube

with electrodes

Control voltages for piezotube

Tunneling Distance

current amplifier and scanning unit

control

Data processing
and display

https://www.nanoscience.com/techniques/scanning-tunneling-microscopy/
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PUSB Puits de potentiel 1D

Puits de potentiel

Atomes
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P . : .
PUSB Spectres d’émission et d’absoption

Spectre d’émission
Nuage de gaz
chaud et transparent Fente
émettant certaines
couleursT

Prisme

Spectre d'émission

Spectre d’absorption
'I':uage deﬂga:hfruldan Fente )
e ep o Prisme

Spectre d'absorption

i

) Les atomes ont des niveaux d’énergie discrets !

Source chaude
émettant un spectre
continu
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20953 Ondes stationnaires

Saint Mary’s University

A
y
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PUSB Ondes ¢lectroniques

Potentiel rectangulaire
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PURB Puits quantique infin1 1D
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2R Atome isolé = puits de potentiel

Puits infini Puits fini
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IURB Puits quantique fini, 1D
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Aux interfaces, la fonction d’onde et sa dérivée sont continues
- déterminer A,B,C,D et E_
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PURB

Mode symétrique

Mode antisymétrique

[e7]

Puits de potentiel

Puits infini

Puits fini
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Puits de potentiel
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IaAB Quantum Wells

https://www.researchgate.net/publication/348894632 Mid-Infrared Intersubband Polaritonic_Devices

g

2D electron gas

* K, discret

* K, et K, continus

Growth direction (z)

d)
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PUSB Ondes ¢lectroniques

Potentiel de Coulomb et

Atome d’hydrogene
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Spectre de ’hydrogene
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PUPB

E,=-13.6-—

Niveaux d’¢nergie de I’hydrogene
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http://en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector
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Potentiel rectangulaire

Formes du potentiel

Potentiel en 1/r
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PUPB Orbaitales atomiques

The Orbitron gallery of atomic orbitals
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PUSB Ondes ¢lectroniques

Potentiel quadratique et

Oscillateur harmonique
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PUPB Oscillateurs harmoniques: exemples

Vibrations cristallines («phonons»):
Oscillations de I’¢énergie cinétique a I’énergie potentielle H = L P’ + E X2
2m 2

Ondes électromagnétiques («photonsy):

_ b
2

Oscillations de 1’énergie du champ E et celle du champ B H = 2 ‘ E‘2 1 ‘ B‘Z
2

Résonateurs LC:

Oscillations de I’¢énergie dans la capicite et celle dans I"inductance
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Formes du potentiel

Potentiel rectangulaire

Potentiel quadratique

Potentiel en 1/r
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PUPB Oscillateurs harmoniques quantiques

Modes propres de ’équation de Schroedinger:

hw
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PUSB Double puits couples

Couplage de puits

Molécules
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20983 Deux atomes: états liants et anti-liants

Deux atomes se€parés Deux atomes proches
avec 1 ¢électron chacun avec 1 électron chacun
Hybridation
B - _ _ _
AT o E Anti-li
@i - 7 nti-hiant H
s S P U B
..o L] o N . E Liant
1 E
Deux ¢tats identiques: Etat « liant »:
- localisés - énergie profonde, occupé par un €lectron
- deux spins possibles par €tat de chaque atome.
- un ¢lectron dans chaque puits Etat « anti-liant »:

- ¢nergie superieure, libre a basse temperature
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PARB C,alcul .des fonctions d gndes ’
et des €nergies pour deux puits couplés

on

C-e A4-&% 1B

Aux interfaces, la fonction d’onde et sa dérivée sont continues
- déterminer A,B,C,D et E_
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PUPB Double puits: couplage fort

et
|
|
-205x107° - 1.025x10°° 0 1.025x107% 2.05x107°
LY v L \ Y

——_

-3 3 |
2051077 - 1.025%10°° 0 1.025%10°° 05x10~° -205x107°  —1.025x10°7° 0 1025x107° 2.05x107° -205x107° - 1.025x107° 0 1.025x107° 2.05%10°°
Modes symétriques Modes asymétriques Energies

Pierre-André Besse p.4.61 “Puits de Potentiel” 2025



PUSB Théorie des perturbations
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PUSB Deux puits couplés

__.4___.. - _é__ _/_\WS____EH

X4 0 X, X
‘ ( t)> a,(t) |~ {eb=x)lven) «puits de gauche»
X =
i a, a, (1)) «~— (px—x)||wx.0) «puits de droite»
Théorie des a o E _ T al
modes couplés: l h o 1 —

ot\ «, -T E .052
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PUSB Deux puits couplés

Théorie des o« E -T) [« «puits de gauche»
modes couplés: inh-— = _ |
ot \ &, o ) a, «puits de droite»
1) Déterminer les modes globaux normés du systéme
et leurs énergies E_ (fréquences o)
Mode symétrique: Mode anti-symétrique:
E=E-T E,=E+T

o=+ () oo=-(")
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PUSB Décomposition et évolution temporelle

2) Projeter le mode d’entrée (au temps t=0) sur ces modes globaux
(produit scalaire entre le mode d’entrée et chaque mode global)

—

\/

5 = (s ()| (x)

n

05 )+ B,

Input t=0: ‘ 14 in> — ;"

§0A> -

"= (0, (0)]|y" ()

3) Propager chaque mode global dans le temps t>0
avec sa fréquence propre o,

_iEsy _Ea,
h . m h . n
e s | Ps > +e 4

(PA>

Propagation: lw ()

in

it
¢S>+e "Pu

_iEstEa, _AE, - AE=FEFE. —F =-2T
pop=e o)) aEemcE—-
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PUPB Pendules couplés: battements

https://www.youtube.com/watch?v=aFacOh9hW9U

o . 7 e A L
Probabilité «Gauchey: , —=n .EﬂfﬂFMm

ECOL

FEDERALE DE LAUSANNE

P.(t)= ‘((1,0)|

l/jout>

=)
=Cos" | —7
2h

Probabilité «Droitey:

2, (AE

=sin"| —7
2h

AE=E,—E,=-2T > X

l/jout>

P, =|((0.1))
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2R Formation de molécules

Molécule H, Molécule He,

Anti-liant

M, H, Hy

3 *
AN
| 1
—— OM, ﬂ
& LY - JJ "\ —_
i % # i
L]

-FF LY J,J l.x
I‘*i’i :’ih" |-I|.:_.$$%~ Il-ﬁﬂu:,
\yut W -

‘n. ..r" ey
L“"'?i" {}Mt T‘t
| &
Liant

H, stable car He, instable car
energie plus petite énergie égale

Chimie générale, Steven S. Zumdahl, Jean-Marie Gagnon, Maurice Rouleau, De Boeck Université
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2R Exercice 4.1: Atome de Bohr

A) Considérez 1’électron comme une particule classique et

2
- : 1
utilisez le potentiel de Coulomb E,, = —( cl ]-—
drs, ) 1

1) Reliez la vitesse et le rayon pour une orbite circulaire stable
en ¢quilibrant la force électrique et la force centrifuge.

2) Pour ces orbites classiques stables exprimez 1’énergie cinétique
et I’énergie totale de I’¢lectron en fonction du rayon

B) Considérez I’¢lectron comme une onde quantique

3) Reliez le vecteur d’onde au rayon pour une orbite stable

4) Exprimez I’énergie cinétique en fonction du rayon

C) Considérez 1’¢électron a la fois comme une particule classique et comme une onde quantique

5) Déterminez I’énergie totale quantifice.
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N E3
...... E2
El
| E=0
x=0 x=W
P S
" 2m 2mW?

Exercice 4.3: Evolution temporelle
dans un potentiel rectangulaire

Un ¢lectron est localis€ dans un puit de potentiel rectangulaire

de largeur W=18um et de profondeur infinie.
Au temps t=0, sa fonction d’onde est centrée a x=W/2 et
elle a la forme:

(xw)2Y
W(f=0)ze( ZV j

avec a=1um

T-h
E,-E

2

Nous définissons le temps caracteristique par ¢, =
1) Décrivez les étapes nécessaires pour simuler 1’évolution
temporelle de cet électron.

2) Simulez la fonction d’onde de cet électron aux temps

t = t avecN=1,2,3,4et5

L3
N 4°
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2B Exercice 4.4: atome de lithium %

Considérez un atome de lithtum (L1)
avec trois ¢lectrons sur deux niveaux d’energie.
Dessinez le schéma d’énergie de la cellule Li-L1

contenant deux atomes L1.
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