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PAB

La science quantique

Une vision singulière

IV) Puits de potentiel

P.A. Besse
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PAB Electron: caractéristique ondulatoire

Réflexion et transmission

Effet tunnel
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PAB Comparaison: photons  électrons

Réflexion totale Réflexion frustrée

Effet tunnelStep de potentiel
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PAB Réflexion sur un step de potentiel

À l’interface, la fonction d’onde et sa dérivée sont continues*  déterminer r12 et t12
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* Voir Cohen-Tannoudji Livre I p. 66.
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PAB Réflexion sur un step de potentiel
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PAB Réflexion sur un step de potentiel
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PAB Réflexion:
cellule solaire hétérostructure réflexive

Suppression des pertes aux contacts

Les minoritaires sont
réfléchis aux contacts

Recombinaison
interne Collection
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Tunnel

Tunnel
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PAB Effet tunnel

Aux interfaces, la fonction d’onde et sa dérivée sont continues  déterminer r et t
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PAB Effet tunnel
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PAB Effet tunnel

R T
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PAB Effet tunnel et Fabry-Perrot électronique
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PAB Effet tunnel (1) 
contact ohmique

J. Singh  « Semiconductor devices »
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PAB Effet tunnel (2) 
diode tunnel

A B C FD E

L. Esaki, prix Nobel 
de physique 1973
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PAB Effet tunnel (3) 
multi-junctions solar cells

 Current matching required
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PAB Effet tunnel (5) 
floating gate memories

Écriture: VG>>0

VG>>0
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EC
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S. Sze « Physics of semiconductor devices »
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PAB Scanning tunnel microscope (STM)

https://www.nanoscience.com/techniques/scanning-tunneling-microscopy/https://en.wikipedia.org/wiki/Scanning_tunneling_microscope
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PAB Puits de potentiel 1D

Puits de potentiel

Atomes
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PAB

Spectre d’émission

Spectre d’absorption

Spectres d’émission et d’absoption

Les atomes ont des niveaux d’énergie discrets !
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PAB Ondes stationnaires

Saint Mary’s University
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PAB Ondes électroniques

Potentiel rectangulaire
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PAB Puits quantique infini  1D
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PAB Atome isolé = puits de potentiel
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PAB Puits quantique fini, 1D

Aux interfaces, la fonction d’onde et sa dérivée sont continues
 déterminer A,B,C,D et En
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PAB Puits de potentiel
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PAB Puits de potentiel
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PAB Quantum Wells

https://www.researchgate.net/publication/348894632_Mid-Infrared_Intersubband_Polaritonic_Devices

2D electron gas

• Kz discret

• Kx et Ky continus
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PAB Ondes électroniques

Potentiel de Coulomb et

Atome d’hydrogène 
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PAB Spectre de l’hydrogène

Série de Balmer en visible

http://physiquereussite.fr/latome2/
spectre-hydrogene-balmer/

PaschenBalmer

Lyman

E
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PAB

http://en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector
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PAB Formes du potentiel

Potentiel rectangulaire
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PAB Orbitales atomiques

www.webelements.com/shop/
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PAB Ondes électroniques

Potentiel quadratique et

Oscillateur harmonique 
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PAB Oscillateurs harmoniques: exemples 

Vibrations cristallines («phonons»):

Oscillations de l’énergie cinétique à l’énergie potentielle 2 2
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Résonateurs LC:

Oscillations de l’énergie dans la capicité et celle dans l’inductance   
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PAB Formes du potentiel

Potentiel quadratique
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PAB Oscillateurs harmoniques quantiques
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PAB Double puits couplés

Couplage de puits

Molécules
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PAB Deux atomes: états liants et anti-liants

E0

Deux atomes séparés
avec 1 électron chacun

Deux états identiques: 
- localisés 
- deux spins possibles par état
- un électron dans chaque puits

Deux atomes proches
avec 1 électron chacun

E1

E2 Anti-liant

Liant

Etat « liant »:
- énergie profonde, occupé par un électron

de chaque atome.
Etat « anti-liant »:
- énergie supérieure, libre à basse température

Hybridation
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PAB Calcul des fonctions d’ondes
et des énergies pour deux puits couplés

Aux interfaces, la fonction d’onde et sa dérivée sont continues
 déterminer A,B,C,D et En
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PAB Double puits: couplage fort

Modes symétriques Modes asymétriques Energies
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PAB Théorie des perturbations
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PAB Deux puits couplés
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PAB Deux puits couplés
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Théorie des 
modes couplés:

«puits de gauche»

«puits de droite»

Mode symétrique: 
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1) Déterminer les modes globaux normés du système
et leurs énergies  En (fréquences n) 
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PAB Décomposition et évolution temporelle

Input t=0: in in in
S S A A     
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( ) ( )in in
A A x x  

2) Projeter le mode d’entrée (au temps t=0) sur ces modes globaux   
(produit scalaire entre le mode d’entrée et chaque mode global)

Propagation: ( )
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3) Propager chaque mode global dans le temps t>0 
avec sa fréquence propre n
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PAB Pendules couplés: battements 

https://www.youtube.com/watch?v=aFacOh9hW9U
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PAB Formation de molécules

Chimie générale, Steven S. Zumdahl, Jean-Marie Gagnon, Maurice Rouleau, De Boeck Université

Liant

Anti-liant

Molécule H2

H2 stable car 
énergie plus petite

Molécule He2

He2 instable car 
énergie égale
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PAB Exercice 4.1: Atome de Bohr 

A) Considérez l’électron comme une particule classique et

utilisez le potentiel de Coulomb
2

0

1

4pot

q
E

r
 

   
 

1) Reliez la vitesse et le rayon pour une orbite circulaire stable
en équilibrant la force électrique et la force centrifuge.

2) Pour ces orbites classiques stables exprimez l’énergie cinétique 
et l’énergie totale de l’électron en fonction du rayon

B) Considérez l’électron comme une onde quantique

3) Reliez le vecteur d’onde au rayon pour une orbite stable

4) Exprimez l’énergie cinétique en fonction du rayon

+

-

r

P

-q

+q

C) Considérez l’électron à la fois comme une particule classique et comme une onde quantique

5) Déterminez l’énergie totale quantifiée.
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PAB Exercice 4.3: Evolution temporelle
dans un potentiel rectangulaire
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Un électron est localisé dans un puit de potentiel rectangulaire
de largeur W=18um et de profondeur infinie.
Au temps t=0, sa fonction d’onde est centrée à x=W/2 et 
elle a la forme:

Nous définissons le temps caractéristique par

1) Décrivez les étapes nécessaires pour simuler l’évolution 
temporelle de cet électron.

2) Simulez la fonction d’onde de cet électron aux temps

avec N=1, 2, 3, 4 et 5
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PAB Exercice 4.4: atome de lithium

Considérez un atome de lithium (Li) 

avec trois électrons sur deux niveaux d’énergie. 

Dessinez le schéma d’énergie de la cellule Li-Li

contenant deux atomes Li. 


